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A P P E N D I X  

N number of atoms in the unit cell 
Eh normalized structure factor 
Rh magnitude of the normalized structure factor 
e h R 2 -- 1 
Cp {Rp, Tp}, pth symmetry operator 
Rp pth rotation matrix of the point group 
Tp translation vector associated with the pth rotation 

matrix of the point group 
I identity 3 x 3 matrix 
Io(x), I t (x)  modified Bessel functions of order zero 

and one respectively 
L4(X) = X 4 -- 4X 2 + 2 

Laguerre polynomial of order 4 
s.s. structure seminvariant. 
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Abstract 

A data reduction system for neutron crystallography 
using a two-dimensional planar multidetector is 
described. The method is based on an a priori 
calculation of the intensity distribution for each 
reflection for any crystal orientation. The orientation 
matrix of the crystal has to be known. From the 
calculated intensity distribution a mask is derived for 
each reflection. The detection elements of the detector 
which are inside the mask are summed to determine the 
intensity of that reflection and the cells outside are used 
to determine the background. The size of the mask is 
adapted to the relative height of the measured intensity 
of the reflector compared to the background. The 

* Present address: EMBL, Grenoble Outstation, 156X, Centre de 
Tri, 38042 Grenoble CEDEX, France. 

theoretical intensity distribution for each reflection is 
calculated in reciprocal space from the primary-beam 
divergence and wavelength spread and the crystal 
mosaic spread, on the basis of the kinematic theory of 
diffraction. The derivation of the necessary equations, 
i.e. the determination of the resolution function of the 
instrument, is presented. Some typical results of data 
collection are also presented. The advantages of this 
data collection method are the safe determination of 
weak reflections, the easy discrimination of reflections 
which nearly overlap, the determination of crystal 
mosaic spread, and the discrimination of inelastic 
scattering in the proximity of intense reflections. 

1. Introduction 

Low-resolution neutron crystallography using H 2 0 /  
D20 contrast variation is establishing itself as a useful 

0567-7394/82/050670-I0501.00 © 1982 International Union of Crystallography 



MICHEL ROTH AND ANITA LEWIT-BENTLEY 671 

method of determining the structures of two-com- 
ponent biological molecules, such as viruses and the 
nucleosome core particle (Bentley, Finch & Lewit- 
Bentley, 1981). These molecules usually form small 
crystals (< 1 mm in the largest dimension) with large 
unit cells (100-400 A) and would thus require large 
neutron fluxes. With long wavelengths (~10 A), how- 
ever, the increased reflectivity of the crystals (of about 
two orders of magnitude) will compensate, to a large 
extent, for low fluxes. The use of a position-sensitive 
two-dimensional multidetector further increases the 
efficiency of data collection. 

Long-wavelength neutrons are monochromated by 
velocity selectors which give a fairly large wavelength 
spread (A2/2) of 4 -10% (full width at half height, 
FWHH). A considerable beam divergence (up to 2 °) 
can be maintained to maximize the neutron flux, 
provided it does not limit the resolving power of the 
instrument for a given crystal. Together with the crystal 
mosaicity, however, these effects cause a large spread 
of reflections which has to be taken into account for 
accurate intensity measurements. 

Position-sensitive multidetectors are being used 
increasingly for X-ray and neutron crystallography 
(Xuong, Freer, Hamlin, Nielsen & Vernon, 1978; 
Spencer & Kossiakoff, 1980; Sj61in & Wlodawer, 
1981). Successful data reduction requires the prediction 
of the position of reflections on each successive data 
frame (spectrum). With proteins, where the majority of 
reflections are weak, more accurate data can be 
obtained if the reflection shape is predicted as well as its 
position. In this paper we present a method of 
calculating a reflection shape from the measured 
properties of the incident beam, the measurable mosaic 
spread of the crystals and the known behaviour of the 
diffracted beam. We call this method the 'resolution- 
function' method, to distinguish it from those that use 
an empirical, learned shape. The term resolution 
function was defined for double-crystal diffractometers 
with single counters by Cooper & Nathans (1967, 
1968) and Lebech & Nielsen (1975) as a function 
measuring 'for a fixed setting of the diffractometer, a 
spread of the incoming and scattered wave vectors 
around their average values'. In our case it is the 
distribution of the diffracted intensity on a two- 
dimensional detector as a function of the crystal 
orientation that is calculated. The experimental con- 
ditions used in the present work, i.e. a velocity selector 
for monochromation of neutrons, no collimation slits, a 
rather large beam divergence and wavelength spread, 
differ from those used in standard neutron diffractom- 
etry and the calculation of the intensity distribution is 
therefore different too. It is worth noting, though, that 
the calculations presented here are not restricted to 
Gaussian approximations as is the case for the earlier 
resolution-function calculations. Gaussian approxi- 
mations are introduced nevertheless in order to speed 

up calculation time on a computer. The strength of any 
resolution-function method is that it predicts a pr ior i  
the shape of a reflection and thus weak reflections can 
be treated as reliably as strong ones. We may evaluate 
overlap between reflections where that occurs and, in 
addition, study any departure of experimental data 
from the theoretical reflection shape. 

2. Instrument geometry 

The instrument used for data collection is the small- 
angle scattering camera D17 at the Institute Laue-  
Langevin. It is installed at the exit of a curved neutron 
guide (H 17) with a wavelength spectrum of 8-20 A. 
The maximum flux at the sample is ~106 n s -~ cm -2 at 
2 = 11 A, the beam divergence about 0.5-1 ° 
(FWHH). The beam is monochromated by a helical 
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Fig. 1. Definition of coordinates. (a) Instrument coordinates: Oy is 

the direction of the incident beam. The detector (coordinates 
O'XY) is rotated by an angle ~ from y around the vertical z. The 
distance D between the sample (at 0)  and the detector is 
determined by measuring the variation of X 1 as a function of x. 
(b) Diffraction coordinates O #  in the system Oxyz. (c) Mosaicity 
rotations r/and ~, of H with respect to Om. 
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slot velocity selector which gives a wavelength spread 
(A2/2) of 10% (FWHH). A 4.5% (FWHH) selector is 
also available with, however, a 50% loss of flux. 

D17 is equipped with a LETI BF:filled multiwire 
planar multidetector, 64 x 64 cm with 16 384 detection 
elements of 0.5 x 0.5 cm each. At the moment the 
1 x 1 cm grid option is used for collecting crystal data. 
The detector can be positioned at 0.8, 1.5, or 2.8 m 
from the sample and rotated horizontally about the 
sample position from 0 to 90 °. 

For single-crystal experiments a full-circle Eulerian 
cradle has been installed to allow crystal orientation. 
The normal beam geometry is used for data collection, 
with an o) step scan and q~,Z and detector rotation 
angle (x) fixed. The axial system was defined using the 
conventions of Busing & Levy (1967), with y parallel to 
the incident beam, z vertical (coincident with the 
crystal rotation axis) and x completing a right-handed 
orthogonal axial system. The axial systems are sum- 
marized in Fig. 1. The crystal is assumed to be placed 
at the origin of the reference system of axes. 

The intensity distribution in the main beam is 
determined experimentally: with no crystal in the 
sample position the counts on the detector (i.e. at a 
distance y = D from the sample) are evaluated to give 
the distribution as a function of x and z in the axial 
system defined above. The distribution of intensity as a 
function of wavelength is determined from a time- 
of-flight measurement. When the beam is mono- 
chromated by a velocity selector the wavelength 
dependence of the intensity can be represented by a 
triangular distribution (Fig. 2) (Ibel, 1976). At the exit 
from the velocity selector, the value of the wavelength 
is somewhat dependent on the direction of the beam, as 
in the case of crystal monochromators. This effect is 
attenuated on D17 by a 3 m neutron guide placed 
between the selector and the sample, and can therefore 
be neglected. The dimensions of the crystals used are 
always of the order of a millimetre or smaller and are 
thus small compared with the sample-to-detector 
distance D (>0.8 m) and to the detector resolution (0.5 
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Fig. 2. Wavelength distribution with the two velocity selectors of 
the spectrometer D17. The inner and the outer curves corre- 
spond to 4.5 and 10% FWHH respectively. 

or 1 cm). It is therefore reasonable to approximate the 
sample by a point crystal. For a given wavelength 2, on 
a given point of the detector, the intensity of the 
incident beam corresponds to a given vector k 0 with 
coordinates 

(ko) x = 2rcx/2D, (ko)y = 2~z/2, (ko) z = 2rcz/2D (1) 

in reciprocal space. 

3. Diffracted intensity 

3.1. General considerations 

To calculate the intensity diffracted by a crystal we 
use the kinematic theory of diffraction, i.e. the 
approximation of an ideally imperfect crystal. This 
approximation seems to be quite reasonable with 
regard to the determination of the size of the reflections. 

We also neglect the influence of the mosaic blocks 
assuming that their size, d, is significantly larger than 
O. 1 ~tm (2/d ~ 10-z). 

Under these conditions the scattering cross section of 
a crystal can be expressed as a sum of Dirac functions 
6(Q - H). Here Q is the scattering vector: 

Q = k - k  o, (2) 

where k 0 and k are the incoming and outgoing wave 
vectors of neutrons respectively and k = k 0 -- 2~z/2 
(elastic scattering). 

3.2. Calculation o f  diffracted intensity for  zero mosaic 
spread 

We want to determine the number of neutrons fin 
scattered within a solid angle &Q in the direction O,~0 
for a given vector H (corresponding to a reflection hkl). 
This number can be expressed as a function of the 
incident beam i(z,x,)t) (Lomer & Low, 1965): 

fn(  O,~o) - - -  
(2n) 3 N 

IF(H)I 2 &QT 
V 

× f f (Q  - H) i(z,x,2) dz dx  d~,, (3) 

where N = number of unit cells in the crystal, T is the 
transmission in the direction O,~0, O,~0 are the spherical 
coordinates related to the axial system z,x,y (Fig. 1 b). 

The diffraction vector Q is a function of z, x, 2, O 
and q). In order to evaluate the integral in (3) it is useful 
to change the variables z,x,2 into Qz, Qx, Q~ by cal- 
culating the Jacobian: 

~9( z,x,;O 
Y = (4) 

O(Qz,Qx, Qy) 

From (1), (2) and using Bragg's law expressed in the 
form 

Q .k  = Q2/2, (5) 
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w e  obtain the following relationships: 

z = D[sin O cos ~0 -- (2/2z0 Q~] 

x = D[sin O sin ~o- (M2z0 Qx] 

2 = (4zc/a 2) Q . k / k  o, 

and thus 

(6) 

J =  (2/2z02 D 2 ~ , (7) 

which can be rewritten as 

J =  (2/Q2)(2/ZzO z DZlcos O -  Qy 2/2~1. (8) 

Introducing the Jacobian (8) into (3) and evaluating the 
integral we obtain: 

3n(O,q~) = N01FI 2 riOT2[2* D/(2zrH)] 2 

x Icos O -- Hy ~,/27rl i(z*,x*,2*), (9) 

where 

2* -- (4zc/H 2) (H~ sin O cos ~0 + H x sin O sin ~0 

+ H~ cos (9) 

z* = D[sin O cos ¢p -- (2"/2zc) H,] (10) 

x* = D[sin O sin q~ -- (2*/270 H x] 

and N o = (2zt) 3 N/V.  

3.3. Effects of  mosaic spread 

In our calculation we have assumed a directionally 
isotropic distribution of mosaic blocks. The different 
orientations of a vector H for a reflection hkl are then 
described by a distribution function fM of tWO param- 
eters: one, r/, is the angle between one of the directions 
of H and the mean direction Hm of the ensemble of 
vectors H. The other, ~, is the rotation angle of H 
about I-I,, (Fig. l e). The vector H is then derived from 
H m using 

H = H m +  r /R× H m . (11) 

Here R is a unit vector perpendicular to H m whose 
direction is given by ~. We are assuming here that the 
distribution function fM depends only on r/ and is 
symmetrical about H m. Thus the final expression of 
6n( O,~o) is: 

fin(O,~0) = NolFI 2 &QT2(D2/H 2) 

x f fM(r/) (~,*/2ZC)=Icos O--  Hy 2"/2rcl 

x i(z*,x*,2*) r/dr/d~,. (12) 

4. Use of  the intensity calculation 

With (12) we may calculate the diffracted intensity in 
any direction (O,q~) for a given reflection hkl and a 

given crystal orientation. The magnitude of this 
intensity will obviously be zero everywhere except in 
close proximity to the direction corresponding to 
Bragg's law. In order to use (12) efficiently it is 
therefore necessary to estimate a priori the direction in 
which a given reflection fulfils Bragg's law for a given 
crystal orientation and then to calculate all values of 
fin(O,~o) in the proximity of that direction. It is thus 
useful to estimate the extent of the volume within which 
the calculation will be performed, especially the angular 
range of rotation of the crystal during which the 
reflection remains in a diffracting position. These 
estimates can be obtained from the geometry of 
diffraction. 

The diffraction geometry in reciprocal space for a 
vector H is shown in Fig. 3. The figure is drawn in the 
plane of mean diffraction, containing the mean incident 
wave vector (k0) m and the vector H. The direct beam is 
represented by the hatched volume centred around 
(k0) m and comprising all vectors k 0 that constitute the 
incident beam. The diffracted part of the incident beam 
is determined by the intersection of this volume with a 

J 

~ / .  . ~ b  I INCIDENT 

~/. 
ky BEAM 

I \ (a) 

~ky 

(b) 
Fig. 3. Geometrical construction in reciprocal space of the 

diffracted beam in the mean diffraction plane (see text). (a) For a 
single vector H, i.e. for zero mosaicity. The only part of the 
incident beam effectively active in diffraction is the section AB.  
(b) With two vectors H to show the effect of the mosaic spread. 
The whole volume of incident beam included between the 
sections A B  and A' B' contributes to diffraction. 
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plane zc which is perpendicular to H and which passes 
through point P at - -H/2 from the origin. The 
diffracted beam is given by a vectorial translation of 
this intersection equal to H. 

The width of the diffracted beam, measured in the 
plane of mean diffraction, is always smaller or at most 
equal to the angular width of the incident beam. This 
width is of course increased by the mosaicity of the 
crystal (Fig. 3b) but in a limited way for real crystals 
where the mosaic spread is smaller than 0.5 o FWHH.  

The transverse angular width of the diffracted beam, 
i.e. in a direction normal to the plane of mean 
diffraction, is about the same as the angular width of 
the incident beam. 

4.1. Gaussian approximation 

The Gaussian approximation is introduced by using 
the following expressions: 

(1) the function 

i(x,z,2) = e x p [ - ( x  2 + z2)/0. 2 D2)] exp[ - (2  - 20)2/0.~,] 

(13) 

for the distribution of intensity in the main beam; this 
approximation holds well for the distribution in x and z 
but is less accurate for the distribution in 2; 

(2) the function 

fM (r/) = exp (--r/2/0. 2) (14) 

for the distribution of mosaicity for all vectors H 
around the mean vector H m for the given hkl. 

The mean diffraction plane is defined by the y axis 
and the direction H m. Let ~0 m be the angle of the z axis 
with this plane and 0~ the angle between H m and the xz  
plane (i.e. the plane normal to the beam). The relative 
value of intensity diffracted in a direction (O,~0) is given 
to a first approximation (if non-exponential factors are 
not considered) by 

fin(O,~o) : expI--(sin 01 - - s in  00)2/0.12- ( O -  0m)2/0.~ 
- -  ( ~  - -  ( f fm)2 /0 .21 ,  ( 1 5 )  

where 00 is the mean Bragg angle, and 

= (G , 2  2 2 + 0.v COS2 01 + 0.n COS 01) 2 

× (0.,2 2 0.2)- l (16) a + 0.v C0S2 01 + 

0.~' = (0.J20) sin 0 o (17) 

2 01) 0 m = 201 + (sin 0 o - sin 01) (20.~ + 0.v cos 

X ( 0 . , 2  2 2 I a + 0.v COS2 01 + 0.n COS Ol)- (18) 

2 40.~ 2 0.n + = 0. .  c o s  2 01 + 2 0. 2 0.2) 

X [(0.2 + 0.2)cos 2 O, + 0.~21-1 (19) 

2 2 20. 2 sin -2 200. (20) 0.o = 0.n C O S - 2  00  + 

The coordinates of maximum intensity for a given 
position of the crystal are 0 m and ~0 m. Because of the 
non-ideality of the incident beam and of the crystal 
mosaicity, the variation of 0 m as a function of 01 
departs noticeably from the ideal case of the O m : 201 
type. Fig. 4 shows the calculated variations of angular 
width (FWHH)  of a reflection in the diffraction plane 
and in the transverse direction (proportional to a o and 
a s respectively) as a function of the mean diffraction 
angle 20o.t 

Since diffraction takes place only for values of 01 
close to 0 o, cos 01 can be replaced by cos 00 in the 
above relations. With a velocity selector the wave- 
length spread 0.a/20 is constant. It follows then that the 
angular widths 0.o and 0.,~ of the reflections are 
independent of wavelength and depend only on the 
mean diffraction angle 200 . 

4.2. Limits  o f  the o9 range 

The crystal data are measured using the normal 
beam geometry, with the crystal being rotated in steps 
about an axis perpendicular to the beam. The rotation 
axis is coincident with the z direction and the rotation 
of the crystal measured as 09. We assume that the 
orientation matrix of the crystal, the UB matrix, has 
been determined and thus the components H x , H y , H  z 
of any vector H of the crystal reciprocal lattice are 
known for co = 0. The components H x , H y , H  z for any 
value of 09 can be calculated using a rotation matrix. In 
order to determine the w range during which a 
reflection remains in the diffracting position we first 
consider the case of zero mosaicity. 

Zero mosaic spread. As seen in Fig. 5, the two 
positions of vector H that are at the limits of the 
domain of diffraction are defined by the positions where 
the plane is tangent to the surface (S) that encloses the 
total volume in reciprocal space in which the intensity 
of the incident beam is non-zero. Thus if the surface S 
is defined as the isointensity contour for which i (z ,x ,2)  
= C ' ~ / m a x  : i ( 0 , 0 , 2 0 )  (where C is a constant), the two 
limiting positions of H are given by 

grad s iIIH. (21) 

Here grad s is the gradient of the function i (z ,x ,2)  at the 

t a v and a a are determined by a least-squares fit of the measured 
primary beam intensity distribution with expression (13). In the case 
of a v we have, in fact, used different values for the horizontal and 
vertical divergences of the beam, avx and av~ respectively, in order to 
obtain a better fit. These two different beam divergences have been 
introduced in the calculation by replacing a~ by 

2 2 s in  2 ~)m "t- 2 Ov : ¢Tvx Ov: COS2 ~Pra 

in relations (16) to (19), and by 

2 2 2 sin 2 ~0 m O), = tTvx COS 2 ~0 m + O'v: 

in relation (20). 
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surface S with respect to variables (ko) ~, (ko) x, (ko)y, 
the components of the incident vectors. In the Gaussian 
approximation defined above the intensity function 
i(z,x,2) is given by: 

2 2 2 2 a1[(k0)y ko]2}, (22) i = i o exp{--az(ko) ~ + ax(ko) x + 

A~ - - = 1 0 %  

t 
~ 1.0 

1.0 
2.0 

0.3 
C:) ,O0 

' L O I - ~  0.3 i i   o.o 
0.0 J 

O. 10. 20. 30. 40. 50. 60. 70. 80. 90. 

(a) 
® DEG. 

A_.__~X = 4.5% 
X 

T /1.0 
2.0 V 1.0 

L oz 

1.0 ----.,---- 03 
0.0 

0.0 , 

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100. 
0 bEG 

(b) 
Fig. 4. Variat ion of  the angular  width ( F W H H )  of  the diffracted 

beam as a function o f  the diffraction angle O for three different 
mosaicit ies (0, 0.3,  1-0 ° F W H H ) "  O = radial width, i.e. in the 
direction of  the p r imary  beam,  + = t ransversal  width, i.e. in the 
direction perpendicular to the first one. (a) and (b) correspond to 
wavelength spreads of 10 and 4.5% respectively. Primary-beam 
divergence 0.87 ° FWHH. 

~,~01 ( (-/)m~a x) 

O ~  ky 

Fig. 5. The two extremes of the diffracting range for a given vector 
tt used to determine the co limits of diffraction for this reflection. 

where 

a z = l / k o e  r, a x = l / k  oa  v, a a = 2 o / k  oa  a. (23) 

The values of (ko) =, (ko) x, (ko) r which fulfil (21) are 
found by solving the following group of equations: 

2 (ko)= (ko)x ( ko )y -  ko 

a~ H~ -a2x H x - a~ Hy 

2 2 2 2 a~[(ko)y ko]2  In( l /C)  a~(ko) ~ + ax(ko) x + - = 

HE + H i + H ~ =  H 2, (24) 

with the result 

(ko)z = (a~tl 2 Hz \ a / - ~ y  [ (k°)y - k°] 

( k o ) x = ( a a  l 2 Hx 
\ ax ] ~ [ (k0)y-  k0] (25) 

I 
(ko)y = ko + m [ln(1/C)]l/2 

~A 

[ × I \ a ,  H y ]  \a- - -~r  ] j " 

The + sign corresponds to the two extreme positions of 
H, To determine the values of 09 corresponding to the 
coordinates given by (25) we use (5) to obtain: 

[ H*(ko)y -- H~ (k0) x] sin o9 

* H*(ko) x] cos 09 --H2/2 * + [H r (ko)y + = - H~ (ko) ~, 

bearing in mind (26) 

H== H*~ 

H x = H* cos 0 9 -  H* sin 09 (27) 

Hy = H* sin 09 + H* cos 09. 

The group of equations (24), (25), (26) is solved 
together in an iterative manner, starting with (ko) x = 
(ko) ~ = 0, (ko)y = k o in (26) to find the first estimate of 
o9 with which to calculate Hx,Hr ,H  z in (27). 

Effect o f  mosaic spread. The solutions of the 
equations given above represent two functions, 

* * * * * * 09mi,(Hz ~ ,H~,H~ ) and 09max(H~ ,H*~,H~ ) which give the 
two limiting values for a vector H of a given crystal. 
Because of mosaic spread, however, a reflection hkl is 
not described by a single vector H but by a whole 
group of vectors H that are related to a mean vector 
H m by small rotations of the angle r/(equation 11). 

The variation of 09min associated with a rotation r/ 
about a unit vector R is given by: 

609 = r/(R x H,n ) grad 09min" (28) 

The gradient is calculated by differentiating 09m~. with 
respect to 74* 74* 14. components of H m. Expression 
(28) can be rewritten as 

609 = r/R(H m x grad 09min), (29) 
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which shows that, for a given value of r/, the variation 
of comin is largest when the vector R is parallel to the 
vector H × grad com~," The maximum variation of COm~ . 
is thus given by 

509 = r l lH m + grad (./9mini. (30) 

At a first approximation the values of grad comin and 
grad comax differ little from the values of grad co 
calculated from (26), where the ideal beam with (k0) z = 
(ko) x = 0; (k0) r = k 0 is assumed. We thus find, using 
(27), that 

(31) rico = r/ 1 + HE(1 _ HE/4k2) _ H i  

Within this approximation the value of 6co corre- 
sponding to 09ma x is the same as for corn*,, and the co 
limits are thus given by: 

comtn = comin( r] = O) -- 509 
(32) 

coma,, = comax(r/= 0) + 5co, 

where the first term on the right is calculated as 
indicated in the preceding paragraph and 6o9 is given by 
(31) taking r/ as the half-width of the distribution of 
mosaic spread for a Gaussian distribution (14). 

5. D a t a  co l l ec t ion  and reduct ion  

5.1. Determination o f  mosaic spread 

With the rotation of the crystal, the position of a 
reflection measured on the detector is displaced 
according to 0 m, q)m" These values depend on the 
mosaic spread r /of  the crystal and in order to calculate 
them a priori (equation 17), ~,, has to be determined. 
This is done, using a small number of strong reflections, 
by determining experimentally the variation of Om with 
01 (i.e. with co) and using (18): 

1 [ (20.~2 + cos2 80) [ dora I-1 
 os--g0 

a;2 , ] - -  - - a  vcos 200 . (33) 

When the beam divergence is an order of magnitude 
larger than the crystal mosaicity, the latter has a 
negligible effect on the variation of O,,, with 01 as well 
as on the size of the reflection of the detector. However, 
for crystals with a mosaic spread commensurate with 
the beam divergence one can indeed obtain a useful 
measure of the mosaicity from (33). Equation (18) 
predicts a nearly linear variation of Om with 01, which is 
indeed found experimentally except towards the limits 
of the co range of strong reflections (see Fig. 6). This 
small discrepancy is not due to the approximations 

made in deriving (15)-(20), as using the exact 
expression (12) leads to the same results. 

It could be imagined that this effect is caused by the 
mosaicity distribution tending to zero more slowly at its 
extremes than a Gaussian function (14) would. To test 
this hypothesis we tried a mosaicity distribution 
represented by the sum of two Gaussians, a principal 
narrow one and a second broader one with smaller 
weight. The results obtained are not always satis- 
factory. A careful analysis of the data indicates that 

26 
O0, ] B 

DE( 

"~ A l /  COUNTS 
2, 2-0° . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ ' 

200O 

! ! / ' 9  "*'~ 

2; ~ ~  1000 

r i i i O 
- 1.0 0 1.0 3o~ DEG. 

(a) 

o,. 8 / , / / I  

7.020 A ~ t  

6"( I T I ~ /  / t//~/?'/' 'COUNTS ,"////-",, 
(1) / / / ,," ',, 20 000 

/ . :' \ 
,, / gl ~, 

5.0 (2)/ (3) ,' ', 
" ~ "  4 -"°  ~ - ~ - ~  0 -1.0 0 1-0 DEO 

(b) 
Fig. 6. Variation of diffraction angle Om and intensity as a function 

of rotation angle co (in fact fio~, which is the offset 09 with respect 
to its mean value for the reflection used here). Experimental 
points o. Upper part of figures and left-hand ordinate scale: 
O,,(o)). Straight lines were calculated with relation (18); 00 is the 
mean Bragg angle; the length AB represents 1 cm on the detector. 
Lower part and right hand scale: variation of total intensity. 
Dashed line experimental curve; full line theoretical curve 
calculated with relation (15); points x are calculated with 
relation (9) by numerical integration over O#. (a) An example of 
a case where mosaicity is negligible (% --, 0): the deviation of 
experimental points from theoretical curves comes from the 
hypothesis that the wavelength distribution in the primary beam 
is independent of x and z. (b) The influence of mosaicity on 
O,n(o)): straight lines (1) and (2) correspond to mosaicities of 0.5 
and 0.0 ° (FWHH) respectively. Line (3) represents the ideal 
(0,20) variation. The deviation of O,, from a straight line as well 
as the long 'wings' on the intensity curves are very likely due to 
phonon scattering, measured on this extremely intense reflection. 
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this anomaly is due to part of the measured intensity 
being in fact phonon scattering. 

5.2. Calculation o f  integration masks  and  back- 
ground  determination 

To calculate the mask of a given reflection in a given 
spectrum, a square integration box of a fixed size 
(typically 5 to 11 cm a side) is positioned around the 
reflection using the predicted coordinates 0 m, 0 m. The 
theoretical relative intensity f n ( O , ¢ )  (equation 15) is 
then calculated for each cell within this box. The cells 
for which the value of fin is found to be larger than the 
threshold value C are retained for intensity integration; 
the remaining cells serve to determine the background. 
For each reflection of the crystal, C is given a different 
value in order to adapt the size of the masks of the 
reflection to its real intensity: 

C ~ C O tTsG/Ima x, (34) 

where /max is the maximum intensity of the reflection, 
aB6 the standard deviation of the background and C O is 
a numerical constant smaller than 1. The value of Co 
was derived from the following considerations: in the 
Gaussian approximation, the theoretical systematic 
error that is introduced by integrating the intensity up 
to the threshold C is equal to CI  c. Here Ic would be the 
exact integrated intensity of the reflection. We can 
assume that the reflection will be integrated without 
bias if the value of CI~ is smaller than a I, the standard 
deviation of I~. We have therefore 

CI c < a,. (35) 

The systematic error given by CI~ is independent of the 
actual intensity of the reflection. It is a function of C O 
and of the ratio 

r = I c / I m a  x. (36) 

The value of a t, on the other hand, increases with 
intensity. The condition (35) is therefore fulfilled for all 
reflections if it holds for the weakest ones. In this latter 
case we can consider 

/max "" trs6 (37) 

and approximate a t by 

or, ~ v/-m-a,a, (38) 

where m is the number of detector elements used for the 
intensity integration. For weak reflections this number 
is significantly smaller than the number of cells used for 
background determination. It can be shown that in the 
Gaussian approximation used the value of m is given 
by 

2r 
m ~ ~ (log l / C )  3/2. (39) 

3X/. 

The value of r can be predicted by integrating fin 
(equation 15). A value of C 0, for which inequality (35) 
is fulfilled, is finally obtained from 

C 0 = (40) 

For a typical value of r = 10, we have C o = 0.2. The 
values of/max a r e  determined experimentally from the 
spectrum closest to the co value where the reflection has 
its maximum intensity (i.e. 01 ~ 00), using a fit of the 
measured intensity against the theoretical value 
fn(O,¢) .  The average background per cell is deter- 
mined from the local background in the vicinity of a 
reflection. It is estimated from cells within the in- 
tegration box of a given reflection. Since several 
reflections can, in fact, be found at least partially in the 
same integration box, it is necessary to proceed in two 
steps. First the masks for all reflections occurring on a 
spectrum are calculated. The background for a reflec- 
tion is then determined within the integration box of 
that reflection using the cells that are not used for any 
mask. The integration boxes are chosen large enough 
to allow a sufficient number of cells to be used for 
background. The precalculation of reflection masks for 
each spectrum allows, at the same time, an easy 
detection of overlap where that occurs. 

6. Test of the integration method 

The data reduction system was tested on data from a 
crystal of the nucleosome core particle soaked in a 
standard (H20) buffer (Bentley, Finch & Lewit- 
Bentley, 1981). The crystal was orthorhombic, space 
group P2~212 l, with cell dimensions a = 111, b = 198, 
c = 111 A, and crystal dimensions 1 x 0.45 x 0.35 
mm. The wavelength used was 2 = 9 .25/k  with A2/2  = 
10%; crystal-to-detector distance D = 154.5 cm, 
detector angle K = 13 °. The data extend to ~25 A d 
spacing for fully recorded reflections. In order to collect 
a full data set to this resolution, with on the average 
two equivalents for each reflection, we measured a total 
crystal rotation of 136 ° using 0.15 ° steps. The time 
per step averaged 6 min. The detector cell size used was 
1 x 1 cm, thus producing spectra of 4096 data per step. 
The beam dimensions were a x = 0.61, ay = 1.59 cm; 
the crystal mosaic spread parameter was r /= 0.0 °. 

The data were processed on the PDP-10, 1070 
computer at the ILL where the program takes about 
80K core. For example, a set of 85 spectra of 4K with 
a total of 32 fully recorded reflections (over 12-3 ° in 
~)  took 232 s of CPU time. 

For comparison, two other data-reduction programs 
were used: 

(1) a program based on the full formulation of the 
resolution function (i.e. equation 12). The only dis- 
advantage of this program is that it is at least ten times 
slower. 
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(2) a program (written by G. A. Bentley) based on a 
simple model for the shape of a reflection in reciprocal 
space (the 'square-box'  method). The mosaic spread of 
the crystal and the beam divergence are accounted for 
together by giving the reciprocal-lattice point a 
spherical volume of radius r/. The wavelength spread is 
accounted for by assuming a range of wavelengths of 
2mean + / - -  2A2. The X,Y  detector coordinates and the 
o) range are calculated as suggested by Wonacot t  
(1977). The shift of a reflection centre during an o) scan 
is assumed linear and individual X,Y  coordinates 
nterpolated between the limiting positions. The actual 

value of r/is determined by trial-and-error using a large 
enough sample of reflections. On each spectrum the 
integration of intensity is performed over a square box 
of size chosen so as to contain the reflection at its 
maximum but to avoid overlap. Background is deter- 
mined from a row of detector cells along each edge of 
the square. These rows of cells are checked for 
anomalies (e.g. overlap) and flagged. 

As can be seen from Table 1, the results using the 
resolution function, whether in its full form or the 
Gaussian approximation, are very similar. The 'square 
box' method gives a worse agreement between sym- 
metry equivalents. The inflexibility of a square in- 
tegration box means that reflections close to detector 
edges will be rejected as partially recorded when in fact 
they could be integrated (and are with the resolution 
function). The same inflexibility causes problems for 
crystals with larger unit-cell dimensions as the in- 
tegration squares start overlapping. The lower part of 
Table 1 demonstrates that the resolution function is 
most useful for determining weak intensities, where the 
discrimination between peak and background can be 
otherwise very difficult. 

The last column in Table 1 shows the results for data  
measured more recently on the same H20 nucleosome 
core particle crystal, using D = 81.3 cm, 2 = 11.87 A, 
A2/2 = 10%, a x = 0.75 cm, ay = 0.87 cm, r / =  0 .0  °. 
The detector angle x was 22 °, with the main beam on 
the edge of the detector. In total, 1712 spectra of 4K 
each were collected, over a scan of 256.5 ° with 0.15 ° 
steps in co. The measuring time averaged 3 min step -1. 
In this way, each unique reflection to a d spacing of 
~ 16.5/k  was measured two to six times. 

Fig. 7 is an example of these data. It illustrates well 
the behaviour of reflections due to the wavelength 
spread: the centre of gravity of reflection 115 shifts by 
some 6 cm across the detector between its peak 
position at o9 = 202.25 ° and its end at co -- 204.35 ° 
Some reflections are separated by as little as one row of 
background cells. Depending on the unit-cell dimen- 
sions, as many as 25 to 120 reflections (for a 111 x 
198 x 111 A primitive cell and a 354 × 354 x 354/~, 
body-centred cell respectively) can be active on a single 
spectrum. 

All data were corrected with a Lorenz factor for 
normal beam geometry, applicable to ideal diffraction 
conditions. We have verified that, in spite of the 
non-ideal conditions, the same results are obtained 
using a Lorenz factor derived from (12). 

Conclusion 

The data reduction method described is well adapted to 
a data-collecting system using cold neutrons when, 
because of the large wavelength spread used, the 
position and size of a given reflection vary over a wide 

Table 1. Comparison of  intensity data obtained by different integration methods 

Total number of reflections 
fully recorded 

Total number of unique 
reflections 

Rsy m on common reflections 
(201 reflections) 

Rsy m for reflections 

Data to 25 A d spacing 

Complete resolution Gaussian resolution Square-box 
function func t i on  approximation 

220 218 207 
I 

119 118 113 

0.023 

Gaussian 

0.023 0.029 

Square box 

Data to 16.5 A 
d spacing 

Gaussian resolution 
function 

832 

282 

0.032 

16.5 A data 

* Rsym =~'hkt Y~[=, II(hkl)i- (I(hkl))l/YhU Z)=, II(hkl)il (Spencer & Kossiakoff, 1980). 

Number of Number of Number of 
R sym* reflections R sym reflections R sym reflections 

0o-3o 0.44 24 0.47 22 0.49 182 
30-60 0.18 36 0.19 42 0.16 118 
60-90 0.09 18 0.12 18 0.12 122 
9a-12a 0.08 12 0.04 4 0.10 48 
above 12a 0.015 74 0.018 78 0.02 295 
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3 0 0 2 3 2 1 1 5 5 3 2 5 7 1 0 3 1 4 1 1 2 0 0 4 0  
1 1 4 0 4 2 3 1 1 1 1 0 4 3 0 3 1 0 2 1 2 1 2 1 1 1  
4 0 1 1 3 1 0 2 1 1 3 3 1 2 2 3 1 6 2 4 1 4 2 ~ 1  
2 1 4 1 2 4 0 1 6 2 1 3 0 1 0 ~ [ ~ J ~ ] 3 1 2 1 1 4 ~ 2 3  2 3 
1 1 0 2 0 1 1 1 3 2 2 5 2 0 1  2 2 2 1  4 
0 3 2 0 7 2 2 1 3 1 1 0 0 2 0 2 1 2 0 1 2 1 1 4 1 1  
1 1 2 2 2 0 2 3 0 1 4 1 4 2 0 0 3 3 3 3 2 1 3 1 2 5  
0 3 2 1 0 2 0 3 2 0 3 2 1 0 2 0 1 2 0 0 1 4 1 1 2 2  
2 1 4 2 2 1 1 2 1 2 3 1 3 2 0 3 6 1 1 2 2 2 2 1 4 2  
2 3 2 1 3 1 1 1 3 1 3 1 ~ 1 1 ~ 2 2 3 1 2  
0 2 3 2 4 2 2 3 1 1 0 1 i ! ! ~ 1 2  2 2 3 1 4  
3 1 3 2 3 2 2 3 0 1 0  10 1 0 2 2 1  
4 3 4 0 3 2 2 0 [ ] 3 4  15 1 2 2 4 1  
1 1 2 0 1 0 3 0 2 0 1 3 1 1 3 2 2 0 0 3 6 1 2 1 1 2  
2 1 2 2 3 2 1 1 2 2 1 0 1 2 3  4 1 2 1 0 3 3 2 1 2  
0 0 1 2 2 0 1 1 1 0 2 1 2 4 1 0 2 0 0 2 3 5 1 1 1 2  
0 6 1 1 1 2 2 1 1 1 1 0 1 2 2  2 1 1 0 4 0 1 1 3 0  
2 2 1 1 2 2 1 2 4 1 1 1 1 3 2  1 0 4 3 2 2 4 1 4 2  
1 1 3 1 1 0 0 2 3  ~ 30' 11 0 ~ 1 5 3 2 0 1 0 5 2  

6 0 0 2 2 1 0 3 1  1 0 3 3 1  34 3 32 
2 3 0 1 1  31 0 2 5 2  2 1 2 4 4 1 2 2  
1 2 2 0 1 2 0 1 1  6 3 1 2  2 1 3 2 1 4 2 2  
2 2 2 1 2 3 8 2 0 2 1 2 2 1 0 4 1 4 4 6 2 0 2 2 4 2  

0 0 2 3 3 0 4 1 2 2 3 3 1 3 2 3 2 2 2 1 2 2 1 4 1 1  
I 0 3 0 2 1 4 1 0 0 3 2 3 1 0 3 1 0 0 1 1 ~ 1 1 3  
0 0 3 4 3 2 0 3 4 2 1 2 0 2 ~ i 3 4 1  12 
3 " 2 1 3 0 1 3 3 0 0 4 3 1 5  003  4 3 
1 0 2 0 1 2 2 2 0 2 1 2 2 3  221 24 
1 3 0 2 2 2 2 3 1 1 3 2 3 6 2 3 2 0 1 4 0 1 2 1 2 1  
0 1 1 4 0 2 1 1 0 2 1 3 3 4 2 0 3 2 2 2 1 5 3 0 2 3  
3 3 1 1 2 4 1 3 4 1 3 5 4 0 2 1 1 3 2 1 2 0 0 2 2 0  
1 3 3 2 0 1 2 1 1 2 1 2 2 2 1 0 3 2 4 1 0 3 1 1 4 2  
1 3 0 1 2 2 2 1 1 0 ~ ' T ' ~ 3 3 1 ~ 2  I 1 1 3 1 1 1  
3 2 0 1 1 2 ~ ' ] ] 2 V 9 5 ~ 4 3 2  3 1 2 0 1 0 4 2  
1 2 4 1 2 ~ 1 1  ~ 0 ~ 1 2 0  1 3 2 1 1 2 2 4  
1 1 0 3 1  2 5 2 1 1 3 2 4 3 2 2 2 3 1  
3 2 2 0 1 3 1 3 3 1 2 0 1 2 0 2 0 0 2 2 0 3 4 0 5 1  
5 3 1 0 4 1 0 0 2 0 1 2 1 0 1 1 0 1 0 1 2 2 0 3 1 3  
2 2 2 2 1 2 0 1 3 0 1 5 1 2 1 2 4 1 3 1 0 1 1 3 3 4  
3 1 6 2 1 2 4 1 0 3 0 1 2 0 4 3 4 1 2 0 2 0 1 1 1 1  
0 1 0 1 3 0 1 3 3 1 3 1 2 0 3 0 1 2 2 1 3 7 1 2 2 3  
3 2 1 3 2 0 0 1 1 1 0 1 0 6 2 3 0 3 3 2 1 4 1 2 0 2  
1 0 1 1 ~ ' ~ 4 [ ~ - ~ ] 2 1 0 1 4 1 4 0 2 6 2 2 1 1 1 4  
2 2 0 2  3 1 4 2 3 4 4 2 2 3 4 3 4 2 3 0 3  
1 4 2 0 1 W 1 2 0 1 0 2 2 3 2 3 1 3 3 1 1 2 3 2 2 1  
2 1 0 3 1 1 3 3 4 3 1 3 2 3 1 3 2 1 2 4 2 1 0 1 2 1  

1 2 0 1 2 0 4 3 0 2 2 ~ 3 2 1 2 ~ 0 4 2 1 2  
0 0 4 1 2 1 2 1 1 2 1  2131  3 2 1 1 0  
0 1 3 2 1 5 [ ~ 4 3 1  1 1 1 0  3 2 4 0 0  
1 2 3 0 1 4  223 4 1 1 1 3 1 2 2 3 3 5 2  
1 2 1 2 4 1 0 2 0 1 1 4 2 0 2 0 0 3 3 0 1 2 0 0 2 3  
3 4 1 2 1 1 2 3 2 2 4 6 1 1 0 1 2 0 0 3 1 0 2 0 3 2  
1 2 3 0 3 2 1 1 4 5 2 1 0 2 5 2 2 1 1 3 1 2 0 4 3 1  
2 3 1 1 1 2 2 3 3 1 1 1 2 1 1 0 1 2 2 3 2 2 1 1 2 1  
2 4 0 1 2 5 3 2 6 3 5 2 0 1 2 0 0 3 2 1 2 1 1 2 3 4  
1 ~  2 ~ 3 2 2 1 2 3 0 2 3 2 2 2 2 2 4 4 5 2  
0 1 1 1 2 2 3 4 0 1 1 2 2 3 3 0 4 3 2 0  
0 ~ 4 1 0 1 1 0 0 2 4 2 0 1 1 3 4 2 1 6 3 1 2 1 1  
I 0 2 1 3 1 2 3 1 7 0 4 2 5 2 1 2 3 1 4 3 4  

1 1 2 1 1 2 1 1 0 1 2 3 2 2 2 2 2 2 3 2 3 3 1 2 0 1  
1 1 2 0 1 1 0 0 2 0 3 2 1 2 2 2 3 3 2 1 5 3 0 3 1 2  
2 1 2 2 0 4 1 0 0 2 3 0 3 3 4 3 3 1 2 1 1 4 2 1 1 3  
1 2 2 1 1 1 0 1 1 1 0 2 2 1 3 0 1 3 2 2 3 0 2 3 1 1  
3 1 0 2 4 1 3 1 2 2 0 1 0 5 2 2 1 2 0 2 4 2 4 2 0 1  

~i 
I 1 0 1 0 1 1 6 2 1 1 1 1 0 2 5 1 3 3 2 2 5  
0 1 2 1 2 2 1 1 2 6 2 2 1 4 0 2 2 3 4 3 1 0  
2 1 5 4 1 2 1 1 4 1 2 2 3 2 1 3 1 0 1 0 3 2  

2 ~ 2 4 4 2 0 4 4 1 0 4 2 1 3 0 3 3 0 5 3 0 2 1 0 4  

Fig. 7. Example of masks calculated ~r the more recent data from 
the nucleosome core-particle crystals. The top lef-hand part of 
the detector is shown. The coordinates of the detector elements 
run ~om 6 to 31 along the top and from 52 to 30 down the 
lef-hand side. Three angular settings of the crystal are illustrated: 

= 202.25 ° (top), ~ = 203.0 ° (middle), and 204.35 ° 
(bottom). The reflections shown are, from left to right and top to 
bottom: 215, 214 and 216 appearing at w = 204.35°; 116, 115 
and 114; 016, 015 and 014 disappearing at ~ = 204.35 ° . 
Reflection 115 is outlined in heavy lines. 

range when the reflection is scanned. The use of  this 
method has shown that it gives, with very simple 
mathematics, a good prediction of  the value of  these 
parameters and an easy adaptation of  the size to the 
real intensity of  the reflection. Reflections very close to 
each other can be easily discriminated and weak 
reflections collected in a safe way. The algorithms 
involved in computing are rather simple and fast. 

The successful application of  the resolution function 
depends on the knowledge of  the primary-beam 
intensity distribution, which can be determined from a 
simple direct measurement. The crystal orientation 
matrix and mosaicity must also be known. If, however, 
the beam divergence is significantly larger than the 
mosaic spread of  the crystal, the resolution function 
becomes essentially independent of the mosaicity 
parameters. This is in fact the case for most crystals, 
using the standard conditions on D 17, with D = 80 cm 
and beam divergence of  1 o 

The scientific interest of  this kind of method is that it 
is based on a theoretical calculation of  diffracted 
intensity. Any marked departure of  experimental data 
from the calculated intensity has to be given a physical 
explanation which demands careful analysis of  what is 
actually measured. Thus we have detected, in the 
proximity of  very intense reflections (Fig. 6b), peaks 
due very likely to phonon scattering. 

The quality of  the data measured so far suggests that 
a gas-filled multiwire multidetector, when properly 
calibrated, is an adequate detector for diffraction data. 

We would like to thank G. A. Bentley for many 
helpful discussions and constant help and advice during 
the development and testing of  the method. 
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